

Drupal Europe

Darmstadt,Germany
10- 14 September 2018

Building high-performance
Thunder sites

Va

by Wolfgang Ziegler

Wolfgang Ziegler A

AN

i)

CEO/CTO drunomics GmbH i
DrupalEurope
¥ @the_real fago Damstock Germany

* Typed data APl maintainer,
past Form APl & Entity API
* Creator of many modules like
Rules, Entity API, Field collection, ...
* Track chair Drupal + Technology

Background

e Thunder-based multi-site project

e Typical publishing project:

Editors publish content (articles, recipes, ...)

Paragraphs, Media, Related content, Listings, Mega-Menu,
Search with autocompletion and facets

 W.ith interactive elements:

Voting, Comments

Goals

Fast responses for logged-out site visitors via cached pages

Long-lived caches by default
- Keep some caches when nodes are edited

- Allow editors to purge cache per page

Good (cached) performance & UX for logged-in users
(commenting, votes)

Reasonable performance for uncached responses

itecture

LI 4

Drupal Europe

Darmstadt,Germany
SeplO-14, 2018

Fast, cached page loads!

« CDN (Cloudflare) = Varnish = Drupal (Page cache)
e Ensure cached responses = Warm caches after editing

 Enhance cached pages via Javascript

Uncached page render performance?

 Without caches, rendering easily can get slow

« Can decoupling help us to obtain better performance?

— Evaluate performance of two possible architectures:
- Traditional approach

- Decoupled approach

Decoupled architecture

« SSR for SEO and fast page loads
e Nuxt.js (Ready-to-go universal Vue.js)

 Backend:
— Drupal + JSON API + Subrequests module

A prototype for comparison

 Contenta CMS example

* Recipe page
- Main recipe node
- 4 related repices by category
- A main menu block

Prototypes: Decoupled vs. Traditional

 Decoupled:
- Nuxt/vue.js example
- Improved with Subrequests
Main-Menu added as subrequest

« Contenta CMS frontend (material theme) of a recipe page
("node view page"), unstyled.

Simple benchmark

* Non-scientific approach on notebook
 Measure page generation time in multiple scenarios
* Repeated each scenarios multiple times, take best result

* Goal: Get an idea on performance differences

Comparison results: Cached response

40

35

30

25

20

15

10

Request time [ms]

— Decoupled system still renders, Drupal not.

m Traditional
m Decoupled

Comparison results: Warmed site, no page-cache

600

500

400

300

200

100

m Traditional
m Decoupled

Request time [ms]

— API requests are all uncached, Drupal has internal caches.,l_II
n -l

Comparison results: After editing the page

450
400
350
300
250
200

m Traditional
m Decoupled

150
100
50

Request time [ms]

— Drupal invalidates render cache

Comparison results: After editing, loading another page

250
200

150

W Traditional

100 m Decoupled

50

Request time [ms]

— Decoupled can keep page caches, Drupal not.

Comparison: Rendering partially cached pages

100
90
80
70
60
50
40
30
20
10

W Traditional with
render cache

Request time [ms]

— Decoupled is fasted when combining cached chunks

dynamic page cache

m Decoupled with page
cache

Performance comparison takeaways

 Vue.js is faster rendering cached responses than Drupal
delivering cached elements

 Unoptimized JSON API requests are rather slow with
embedded entities (~200ms)

— JSON API without embedded entities ~70ms

- comparable request including embedded entities with Views
REST plugin: ~110ms

— Optimization needed

Traditional vs decoupled

 Decoupled setup misses cache of rendered pages

» Decoupled setup has performance advantages due to better re-
use of partially cached pages, but..

- performance gains are not huge compared to dynamic page cache

- decoupled system requires more complex hosting & development
* Young projects pose a maintenance risk, future updates?

— Go with traditional approach & use dynamic page cache!

with Drupal

LI 4

Drupal Europe

Darmstadt,Germany
SeplO-14, 2018

The foundation: Drupal cache metadata

 Everywhere in the APIs
» Everyrendered element provides it
e Metadata is aggregated during rendering

« Cache metadata:
— Cache context (by-user, by-path, ...)
- Cache tags (“dependencies” - invalidate when X changes)
- Max-Age - 0 (nho-cache), permanent

Cached pages in Drupal

e (Internal) Page cache: ~20ms
 Dynamic page cache: ~80ms

 Render cache

- Typically blocks & rendered entities (view-modes)

Internal page cache

« Keeps an internal copy of cached pages (after CDN, Varnish)
» Defaults to database backend, pluggable

* Invalidated based upon cache tags
- Possible with CDNs - but not on cheap plans
- Possible with Varnish - but not yet stable

- Risk of too frequent updates & bad cache usage

— Need to avoid high-frequent cache invalidation

Internal page cache: Keep it!

e Customize it to cache 7 days / 1h depending on page

* Do not invalidate automatically
- except node/{id }

« — Module: drupal.org/project/preserve_page_cache

e Custom purger for editors to invalidate by URL

- Invalidates page cache, varnish, CDN

« Database based for storage

Warm caches after editing

e drupal.org/project/prefetcher
e Runregularly on cron to warm caches
» Keeps track of pages and their cache lifetime

« Warms a certain number of pages per run

Dynamic page cache

e (Caches authenticated + anonymous pages

» Caches pages minus personalized parts

— lazy-builders render un-cached bits

» Auto-placeholdering auto-creates lazy-builders for high-
cardinality cache-contexts

— user, session

Automatic placeholdering

e Configurable via service parameter in services.yml

renderer.config:
auto placeholder conditions:
max-age: 0
contexts: ['session’, 'user']
tags: []

 Dynamic page cache only applies to elements which are
excluded by this configuration!

Dynamic page cache — Room for improvement

e If auto-placeholdering fails, dynamic page cache fails!

 And it happened all the time for editors!

- #2949457: Toolbar's renderPlain() is incompatible with dynamic
page cache [needs review]

- #2899392: user_hook_toolbar() makes all pages uncacheable
[done, 8.5]

- #2914110: Shortcut hook_toolbar implementation makes all
pages uncacheable [needs work]

e Can happen when adding features = Add tests!

Dynamic page cache — Room for improvements (2)

* Automatic per-permission-hash cache context
— Helps preventing permission issues
- But - it's bad for cache-reuse across roles

— Doubles page cache of anonymous pages

e |dea:
- Remove permission cache-context (& take care!)

— Better cache-usage
— Anonymous page loads warms cache for authenticated

pages

Render cache

» Typically blocks & rendered entities (view-modes)

 Mostly
- Dynamic page cache is already by URL

- Render cache elements duplicate dynamic page cache!

o Still it’s useful
- For lazy-built elements

- For speeding up “uncached” page generation time

Render cache: Tune it!

 Often many, many items end up in the cache
— Per user, per URL (query), per role
— Usually does not fit into memcache/Redis
- Since 8.4.x - limited to 5.000 items in database
— See https:/www.drupal.org/node/2891281
— Inspect your cache items

— Disable unwanted items via d.o./project/cache_split
— Remove all per-URL caches

Cache invalidation via cache tags

e Drupal’s cache metadata is a sensible default
« But the default is often to generic

- list_node, list_taxonomy
» Every page depends on list_node

— every edit, invalidates dynamic page cache of every page!

Customize cache metadata on rendered elements

 Remove too generic cache tags (list_node) & context

 Add new cache tags fitting to use-cases

- node.field_channel

» cache_tools - Sanitize cache metadata of blocks & Views

— Strip cache contexts (route, url.query_args)

* https:/www.drupal.org/project/cache_tools

Test coverage for cache metadata!

» Activate X-Drupal-Cache-Contexts for testing

« Add a test per page to verify cache metadata
- Test unwanted tags, context are not set

- Test changes appear as required

 Module “region_renderer” to render regions and test output
- drupal.org/project/region_renderer
- Take care of headers and footer to be cached!

- Avoid useless cache context like url, route.menu_active_trails

ages & caching

Drupal Europe

Darmstadt,Germany
SeplO-14, 2018

Goal: Leverage caches as far as possible

e Pages are mostly same for all users
« Some elements (voting, comments, ...) differ

— Fetch cached pages & adapt!

— Use Javascript to enhance cached responses.

How to fetch user-dependent elements?

e Leverage BigPipe & streamed responses

» Lazy-load content via ajax requests

BigPipe — The solution?

* Drupal delivers the cached response first
« HTTP response is streamed

e Lazy-builders render the rest & replace the elements in the
dom

Problems with BigPipe

It's hard to control what's streamed

- Cache metadata & available lazy-builders decide

- Not obvious and hard to inspect why something is streamed or
not

Frontend developers are not in control

Depends on jQuery

Does not work with externally cached pages

Lazy-load via Ajax requests — use Drupal.ajax ?

« Again: Frontend developers cannot control the process
e No caching by default (POST)
« Ajax assets plus solves caching

« Rather complex, hard-to introspect

Lazy-load via custom Ajax requests

* Frontend issues custom Ajax requests as needed

— Developers can easily improve UX

 Backend developers provide API responses

— Easy to control caching

e Clear interface, easy to control & debug

Apply progressive decoupling

e Use Vue.js to render elements
* Fetch necessary data from custom APl endpoints

* Apply custom caching to custom APl endpoints that can vary

— Faster initial render time

— Improve cache usage!

Improve cache lifetime!

Keep main pages as long cache-able as possible

|ldentify high-frequent changing elements that can be lazy-
loaded

— Mega-Menu content (Latest articles, ...)
— Comments

— Social media counts, Latest prices from amazon
products, ...

performance

Drupal Europe

Darmstadt,Germany
SeplO-14, 2018

Frontend principles

Optimize on first render time (better UX!)

Keep HTTP requests down
- Inline required SVG icons, inline critical fonts

- Lazy-load images
Stay in control - no Drupal Javascript, Ajax, ...
— Loading animations, ...

Use modern stuff: Vue.js, ES6, no jQuery

— Leverage modern frontend toolchain (Webpack)

Optimize for first render

« Keep only critical CSS and Javascript in main builds
* Lazy-load additional frontend assets when needed
e Leverage webpack code-splitting

— Asynchronous Vue.js components lazy-load chunks

Webpack chunks & caching

e Drupal’s JS/CSS aggregation is great for cached pages

 Webpack chunks bypass it

« Sijtuations with cached pages requiring old chunks may arise
— Take care to keep old chunks around

— Copy chunks to Drupal’s JS and use .htaccess to fallback
to deliver else missing chunks

ance Testing

Drupal Europe

Darmstadt,Germany
SeplO-14, 2018

Sitespeed.io

* Focused on frontend performance
* Provides docker container with chrome & firefox

* Analyzes rendering and provides
- Metrics (Backend-Time, First Visual Paint, Last Visual Change)
- Suggestions for improvements (like lighthouse)
- Records videos of the rendering process

- Waterfall of requests

Sitespeed.io integration

e Test all page variants
» Tested pages without page cache

* Integrate in Cl workflow to automatically generate the
report

» Define performance budget

— fail if it is not met

Example report

9 pages analyzed for http://{ . 0Ca. ..

Tested 2018-09-03 14:07:55 using Chrome for 2 runs with desktop profile and connectivity native.

URL Total Size (kb) Total Requests First Visual Change Speed Index Last Visual Change Performance score
Simple-Page 4429 24 667 730 900

Artikel-Page 982.4 31 1100 1242 1933
Recipe-Page 638.5 34 1066 1114 1966

Topic-Page 700.9 32 1266 1321 2100

Paragraphs-Demo 519.0 25 1400 1476 2200

Paragraph-ToC 537.1 25 734 752 1500

Paragraph-Teaser 532.6 28 800 856 1600

Search 5145 27 300 678 1600

MSL_Simple-Page 385.9 20 900 909 1067 [95 |

Use Behat to verify Caching requirements

e Add behat feature per page-type
- Test cache headers (Page Cache, Dynamic Page Cache)
— Test Drupal cache metadata

— Ensure no jQuery is added in
* Test header / footer region responses

» Test cachability of API responses

Drupal Europe

Darmstadt,Germany
SeplO-14, 2018

Takeaway

e Caching-strategy must be planned from the beginning
» Caching / Freshness requirements must be clear

e Drupal has great caching options, but it could be easier to
use

e Improve Drupal’s cache metadata

* Use testing to avoid accidental regressions

Thank you!

Questions?

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55

