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Background

e Thunder-based multi-site project

e Typical publishing project:

Editors publish content (articles, recipes, ...)

Paragraphs, Media, Related content, Listings, Mega-Menu,
Search with autocompletion and facets

 W.ith interactive elements:

Voting, Comments



Goals

Fast responses for logged-out site visitors via cached pages

Long-lived caches by default
- Keep some caches when nodes are edited

- Allow editors to purge cache per page

Good (cached) performance & UX for logged-in users
(commenting, votes)

Reasonable performance for uncached responses
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Fast, cached page loads!

« CDN (Cloudflare) = Varnish = Drupal (Page cache)
e Ensure cached responses = Warm caches after editing

 Enhance cached pages via Javascript



Uncached page render performance?

 Without caches, rendering easily can get slow

« Can decoupling help us to obtain better performance?

— Evaluate performance of two possible architectures:
- Traditional approach

-  Decoupled approach



Decoupled architecture

« SSR for SEO and fast page loads
e Nuxt.js (Ready-to-go universal Vue.js)

 Backend:
—  Drupal + JSON API + Subrequests module



A prototype for comparison

 Contenta CMS example

* Recipe page
- Main recipe node
- 4 related repices by category
- A main menu block



Prototypes: Decoupled vs. Traditional

 Decoupled:
- Nuxt/vue.js example
- Improved with Subrequests
Main-Menu added as subrequest

« Contenta CMS frontend (material theme) of a recipe page
("node view page"), unstyled.



Simple benchmark

* Non-scientific approach on notebook
 Measure page generation time in multiple scenarios
* Repeated each scenarios multiple times, take best result

* Goal: Get an idea on performance differences



Comparison results: Cached response
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Comparison results: Warmed site, no page-cache
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Comparison results: After editing the page
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Comparison results: After editing, loading another page
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— Decoupled can keep page caches, Drupal not.



Comparison: Rendering partially cached pages
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Performance comparison takeaways

 Vue.js is faster rendering cached responses than Drupal
delivering cached elements

 Unoptimized JSON API requests are rather slow with
embedded entities (~200ms)

—  JSON API without embedded entities ~70ms

- comparable request including embedded entities with Views
REST plugin: ~110ms

— Optimization needed



Traditional vs decoupled

 Decoupled setup misses cache of rendered pages

» Decoupled setup has performance advantages due to better re-
use of partially cached pages, but..

- performance gains are not huge compared to dynamic page cache

- decoupled system requires more complex hosting & development
* Young projects pose a maintenance risk, future updates?

— Go with traditional approach & use dynamic page cache!



with Drupal

LI 4

Drupal Europe

Darmstadt,Germany
SeplO-14, 2018




The foundation: Drupal cache metadata

 Everywhere in the APIs
» Everyrendered element provides it
e Metadata is aggregated during rendering

« Cache metadata:
— Cache context (by-user, by-path, ...)
- Cache tags (“dependencies” - invalidate when X changes)
- Max-Age - 0 (nho-cache), permanent



Cached pages in Drupal

e (Internal) Page cache: ~20ms
 Dynamic page cache: ~80ms

 Render cache

- Typically blocks & rendered entities (view-modes)



Internal page cache

« Keeps an internal copy of cached pages (after CDN, Varnish)
» Defaults to database backend, pluggable

* Invalidated based upon cache tags
- Possible with CDNs - but not on cheap plans
- Possible with Varnish - but not yet stable

- Risk of too frequent updates & bad cache usage

— Need to avoid high-frequent cache invalidation



Internal page cache: Keep it!

e Customize it to cache 7 days / 1h depending on page

* Do not invalidate automatically
- except node/{id }

« — Module: drupal.org/project/preserve_page_cache

e Custom purger for editors to invalidate by URL

- Invalidates page cache, varnish, CDN

« Database based for storage



Warm caches after editing

e drupal.org/project/prefetcher
e Runregularly on cron to warm caches
» Keeps track of pages and their cache lifetime

« Warms a certain number of pages per run



Dynamic page cache

e (Caches authenticated + anonymous pages

» Caches pages minus personalized parts

— lazy-builders render un-cached bits

» Auto-placeholdering auto-creates lazy-builders for high-
cardinality cache-contexts

— user, session



Automatic placeholdering

e Configurable via service parameter in services.yml

renderer.config:
auto placeholder conditions:
max-age: 0
contexts: ['session’, 'user']
tags: []

 Dynamic page cache only applies to elements which are
excluded by this configuration!



Dynamic page cache — Room for improvement

e If auto-placeholdering fails, dynamic page cache fails!

 And it happened all the time for editors!

- #2949457: Toolbar's renderPlain() is incompatible with dynamic
page cache [needs review]

- #2899392: user_hook_toolbar() makes all pages uncacheable
[done, 8.5]

- #2914110: Shortcut hook_toolbar implementation makes all
pages uncacheable [needs work]

e Can happen when adding features = Add tests!



Dynamic page cache — Room for improvements (2)

* Automatic per-permission-hash cache context
— Helps preventing permission issues
- But - it's bad for cache-reuse across roles

— Doubles page cache of anonymous pages

e |dea:
- Remove permission cache-context (& take care!)

— Better cache-usage
— Anonymous page loads warms cache for authenticated

pages



Render cache

» Typically blocks & rendered entities (view-modes)

 Mostly
- Dynamic page cache is already by URL

- Render cache elements duplicate dynamic page cache!

o Still it’s useful
- For lazy-built elements

- For speeding up “uncached” page generation time



Render cache: Tune it!

 Often many, many items end up in the cache
—  Per user, per URL (query), per role
— Usually does not fit into memcache/Redis
- Since 8.4.x - limited to 5.000 items in database
— See https:/www.drupal.org/node/2891281
— Inspect your cache items

— Disable unwanted items via d.o./project/cache_split
— Remove all per-URL caches



Cache invalidation via cache tags

e Drupal’s cache metadata is a sensible default
« But the default is often to generic

- list_node, list_taxonomy
» Every page depends on list_node

— every edit, invalidates dynamic page cache of every page!



Customize cache metadata on rendered elements

 Remove too generic cache tags (list_node) & context

 Add new cache tags fitting to use-cases

- node.field_channel

» cache_tools - Sanitize cache metadata of blocks & Views

— Strip cache contexts (route, url.query_args)

* https:/www.drupal.org/project/cache_tools



Test coverage for cache metadata!

» Activate X-Drupal-Cache-Contexts for testing

« Add a test per page to verify cache metadata
- Test unwanted tags, context are not set

- Test changes appear as required

 Module “region_renderer” to render regions and test output
- drupal.org/project/region_renderer
- Take care of headers and footer to be cached!

- Avoid useless cache context like url, route.menu_active_trails
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Goal: Leverage caches as far as possible

e Pages are mostly same for all users
« Some elements (voting, comments, ...) differ

— Fetch cached pages & adapt!

— Use Javascript to enhance cached responses.



How to fetch user-dependent elements?

e Leverage BigPipe & streamed responses

» Lazy-load content via ajax requests



BigPipe — The solution?

* Drupal delivers the cached response first
« HTTP response is streamed

e Lazy-builders render the rest & replace the elements in the
dom



Problems with BigPipe

It's hard to control what's streamed

- Cache metadata & available lazy-builders decide

- Not obvious and hard to inspect why something is streamed or
not

Frontend developers are not in control

Depends on jQuery

Does not work with externally cached pages



Lazy-load via Ajax requests — use Drupal.ajax ?

« Again: Frontend developers cannot control the process
e No caching by default (POST)
« Ajax assets plus solves caching

« Rather complex, hard-to introspect



Lazy-load via custom Ajax requests

* Frontend issues custom Ajax requests as needed

— Developers can easily improve UX

 Backend developers provide API responses

— Easy to control caching

e Clear interface, easy to control & debug



Apply progressive decoupling

e Use Vue.js to render elements
* Fetch necessary data from custom APl endpoints

* Apply custom caching to custom APl endpoints that can vary

— Faster initial render time

— Improve cache usage!



Improve cache lifetime!

Keep main pages as long cache-able as possible

|ldentify high-frequent changing elements that can be lazy-
loaded

— Mega-Menu content (Latest articles, ...)
— Comments

— Social media counts, Latest prices from amazon
products, ...
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Frontend principles

Optimize on first render time (better UX!)

Keep HTTP requests down
- Inline required SVG icons, inline critical fonts

- Lazy-load images
Stay in control - no Drupal Javascript, Ajax, ...
— Loading animations, ...

Use modern stuff: Vue.js, ES6, no jQuery

— Leverage modern frontend toolchain (Webpack)



Optimize for first render

« Keep only critical CSS and Javascript in main builds
* Lazy-load additional frontend assets when needed
e Leverage webpack code-splitting

— Asynchronous Vue.js components lazy-load chunks



Webpack chunks & caching

e Drupal’s JS/CSS aggregation is great for cached pages

 Webpack chunks bypass it

« Sijtuations with cached pages requiring old chunks may arise
— Take care to keep old chunks around

— Copy chunks to Drupal’s JS and use .htaccess to fallback
to deliver else missing chunks
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Sitespeed.io

* Focused on frontend performance
* Provides docker container with chrome & firefox

* Analyzes rendering and provides
- Metrics (Backend-Time, First Visual Paint, Last Visual Change)
- Suggestions for improvements (like lighthouse)
- Records videos of the rendering process

- Waterfall of requests



Sitespeed.io integration

e Test all page variants
» Tested pages without page cache

* Integrate in Cl workflow to automatically generate the
report

» Define performance budget

— fail if it is not met



Example report

9 pages analyzed for http://{ . 0Ca. ..

Tested 2018-09-03 14:07:55 using Chrome for 2 runs with desktop profile and connectivity native.

URL Total Size (kb) Total Requests First Visual Change Speed Index Last Visual Change Performance score
Simple-Page 4429 24 667 730 900

Artikel-Page 982.4 31 1100 1242 1933
Recipe-Page 638.5 34 1066 1114 1966

Topic-Page 700.9 32 1266 1321 2100

Paragraphs-Demo 519.0 25 1400 1476 2200

Paragraph-ToC 537.1 25 734 752 1500

Paragraph-Teaser 532.6 28 800 856 1600

Search 5145 27 300 678 1600

MSL_Simple-Page 385.9 20 900 909 1067 [ 95 |




Use Behat to verify Caching requirements

e Add behat feature per page-type
- Test cache headers (Page Cache, Dynamic Page Cache)
— Test Drupal cache metadata

—  Ensure no jQuery is added in
* Test header / footer region responses

» Test cachability of API responses
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Takeaway

e Caching-strategy must be planned from the beginning
» Caching / Freshness requirements must be clear

e Drupal has great caching options, but it could be easier to
use

e Improve Drupal’s cache metadata

* Use testing to avoid accidental regressions



Thank you!

Questions?
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